Efficient Countermeasures against RPA, DPA, and SPA
نویسندگان
چکیده
In the execution on a smart card, side channel attacks such as simple power analysis (SPA) and the differential power analysis (DPA) have become serious threat [15]. Side channel attacks monitor power consumption and even exploit the leakage information related to power consumption to reveal bits of a secret key d although d is hidden inside a smart card. Almost public key cryptosystems including RSA, DLP-based cryptosystems, and elliptic curve cryptosystems execute an exponentiation algorithm with a secret-key exponent, and they thus suffer from both SPA and DPA. Recently, in the case of elliptic curve cryptosystems, DPA is improved to the Refined Power Analysis (RPA), which exploits a special point with a zero value and reveals a secret key [10]. RPA is further generalized to Zero-value Point Attack (ZPA) [2]. Both RPA and ZPA utilizes a special feature of elliptic curves that happens to have a special point or a register used in addition and doubling formulae with a zero value and that the power consumption of 0 is distinguishable from that of an non-zero element. To make the matters worse, some previous efficient countermeasures are neither resistant against RPA nor ZPA. Although a countermeasure to RPA is proposed, this is not universal countermeasure, gives each different method to each type of elliptic curves, and is still vulnerable against ZPA [30]. The possible countermeasures are ES [3] and the improved version [4]. This paper focuses on countermeasures against RPA, ZPA, DPA and SPA. We show a novel countermeasure resistant against RPA, ZPA, SPA and DPA without any pre-computed table. We also generalize the countermeasure to present more efficient algorithm with a pre-computed table.
منابع مشابه
Secure Elliptic Curve Exponentiation against RPA, ZRA, DPA, and SPA
SUMMARY In the execution on a smart card, side channel attacks such as the simple power analysis (SPA) and the differential power analysis (DPA) have become serious threat. Side channel attacks monitor the side channel information such as power consumption and even exploit the leakage information related to power consumption to reveal bits of a secret key d although d is hidden inside a smart c...
متن کاملAn Improved and Efficient Countermeasure against Power Analysis Attacks
Recently new types of differential power analysis attacks (DPA) against elliptic curve cryptosystems (ECC) and RSA systems have been introduced. Most existing countermeasures against classical DPA attacks are vulnerable to these new DPA attacks which include refined power analysis attacks (RPA), zero-value point attacks (ZPA), and doubling attacks. The new attacks are different from classical D...
متن کاملEfficient elliptic curve scalar multiplication algorithms resistant to power analysis
This paper presents four algorithms for securing elliptic curve scalar multiplication against power analysis. The highest-weight binary form (HBF) of scalars and randomization are applied to resist power analysis. By using a special method to recode the scalars, the proposed algorithms do not suffer from simple power analysis (SPA). With the randomization of the secret scalar or base point, thr...
متن کاملHighly Efficient Elliptic Curve Scalar Multiplication Method with Resistance against Side Channel Attacks
Elliptic Curve Cryptosystems (ECCs) has attracted many researchers and has been included in many standards. ECC is evolving as an attractive alternative to other public-key schemes such as RSA by offering the smallest key size and the highest strength per bit. Small key sizes and computational efficiency make ECCs not only applicable to hosts processing security protocols over wired networks, b...
متن کامل